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Abstract
By means of a novel exact-diagonalization technique, we show that bound pairs
propagate between repulsive Hubbard clusters in a superconducting fashion.
The size of the matrices that must be handled depends on the number of
fermion configurations per spin, which is of the order of the square root of
the overall size of the Hilbert space. We use CuO4 units connected by weak
O–O links to model the interplanar coupling and c-axis superconductivity in
cuprates. The numerical evidence on Cu2O8 and Cu3O12 prompts the proposal
of a new analytic scheme describing the propagation of bound pairs and also
the superconducting flux quantization in a 3D geometry.

(Some figures in this article are in colour only in the electronic version)

Evidence for pairing in the repulsive Hubbard and related models has been reported by several
authors. Analytic approaches [1, 2], even at strong coupling [3], generalized conserving
approximation theories like FLEX [4],as well as quantum Monte Carlo studies on supercells [5]
lead to this conclusion. However, we want more evidence about the real nature of the
pairing interactions. Su and co-workers [6] have reported that in narrow-band one- and two-
dimensional Hubbard models, no kind of superconducting long-range order holds at any non-
zero temperature. Here we wish to explore the possibility that the Hubbard model can show
superconductivity in the ground state when interplanar coupling is allowed. Since one cannot
master the problem with an infinite stack of infinite planes, some economy is needed. However,
in high-Tc superconductors the coherent length is approximately a few lattice constants, and
Cu–O planes can be approximately represented by clusters that are large enough to host a bound
pair. The interplanar hopping does not dissolve pairs and superconducting flux quantization is
their clear signature. The magnetic properties of attractive Hubbard models have been studied
by Canright and Girvin [7]; here we propose a gedanken experiment very much in the spirit
of Little and Parks [8], in the repulsive case.

The repulsive Hubbard Hamiltonian of fully symmetric clusters C has two-body singlet
eigenstates without double occupation [9–12] called W = 0 pairs. The presence of such
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Figure 1. The trend of �CuO4 (4) in t units versus log[U/t].

solutions at the highest occupied level of the non-interacting (Hubbard U → 0) system is
necessary to allow �C(N) < 0 where �C(N) = E (0)

C (N) + E (0)
C (N − 2) − 2E (0)

C (N − 1), and
E (0)
C (N) is the interacting ground state energy of the cluster C with N fermions. By means

of a non-perturbative canonical transformation [2] [13], it can also be shown that �C(N) < 0
is due to an attractive pairing effective interaction and at weak coupling |�C(N)| is just the
binding energy of the pair.

CuO4 is the smallest cluster which fully preserves the point symmetry of the copper oxide
planes of high-Tc materials. We have already described W = 0 pairing in great detail as a
function of the one-body and interaction parameters on all sites; the study was extended to
larger clusters too [1, 11]. W = 0 bound pairs in the CuO4 cluster are found to exist in the
physical region of the parameter space. However, since it is the symmetry that produces the
pairing force, we use the simplest working model to study bound pair propagation. Here,
in order to simplify the analytical formulae, we neglect the O–O hopping term and also any
distinction between Cu and O sites (except as regards geometry, of course). The only non-
vanishing hopping matrix elements are those between an oxygen site and the central copper
site; they are all equal to t . For the sake of simplicity, we parametrize the Hubbard model in
such a way that actually everything depends only on the ratio U/t ; the important thing is that
in this way we still have access to the part of the parameter space where pairing occurs [9].
Thus, we consider the Hubbard Hamiltonian

HCuO4 = t
∑
iσ

(d†
σ piσ + p†

iσ dσ ) + U

(∑
i

n̂(p)

i↑ n̂(p)

i↓ + n̂(d)
↑ n̂(d)

↓

)
(1)

where p†
iσ and piσ are the creation and annihilation operators on the oxygen i = 1, . . . , 4 with

spin σ = ↑,↓, d†
σ and dσ are the creation and annihilation operators on the copper site, while

n̂(p)

iσ = p†
iσ piσ and n̂(d)

σ = d†
σ dσ are the corresponding number operators. HCuO4 is invariant

under the permutation group S[4], which has the irreducible representations (irreps)A1 (totally
symmetric), B2 (totally antisymmetric), E (self-dual), T1 and its dual T2, of dimensions 1, 1, 2,
3 and 3, respectively. The ground state of CuO4[2] (i.e. CuO4 with two fermions) belongs to
1A1 and that of CuO4[4] is in 1E; both are singlets, as the notation implies. The ground state
of CuO4[3] is a 2T1 doublet. �CuO4(4) < 0 for this model when 0 < U � 34.77t , as shown in
figure 1.

Thus, we introduce a graph � with CuO4 units as nodes. The total Hamiltonian is

Htot = H0 + Hτ (2)
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with

H0 =
∑
α∈�

[
t
∑
iσ

(d†
ασ pα,iσ + p†

α,iσ dασ ) + U

(∑
i

n̂(p)

α,i↑n̂(p)

α,i↓ + n̂(d)
α↑ n̂(d)

α↓

)]
, (3)

where p†
α,iσ is the creation operator on the oxygen i = 1, . . . , 4 of the αth cell and so on. Hence,

the point symmetry group of H0 is S[4]|�|, with |�| the number of nodes. There are many
different ways to model an interplanar hopping. Nevertheless, to preserve the symmetry that
produces the �CuO4(4) < 0 property, Hτ must be invariant under the S[4] diagonal subgroup
of S[4]|�|. In the following we shall consider a hopping term allowing a particle in the i th
oxygen site of the αth unit to move towards the i th oxygen site of the βth unit with hopping
integral ταβ :

Hτ =
∑

α,β∈�

∑
iσ

[ταβ p†
α,iσ pβ,iσ + h.c.]. (4)

For N = 2|�| and ταβ ≡ 0, the unique ground state consists of two fermions in each CuO4

unit. This letter is devoted to the interplanar hopping produced by small ταβ � |�CuO4(4)|
with a total number of particles N = 2|�|+2 p; p represents the number of added pairs. When
U/t is such that �CuO4(4) < 0, each pair prefers to lie on a single CuO4 and for N = 2|�|+2 p
the unperturbed ground state is 2p × (|�|

p

)
times degenerate (since 1E has dimension 2).

Using such models, one can study the interaction of several fermion pairs in the same
system. The simplest topologically non-trivial graph is the ring, with a set � = {1, 2, . . . , |�|}
and

ταβ =




τ if β = α + 1,

τ ∗ if β = α − 1,

0 otherwise,

τ = |τ | exp

(
2π i

|�|
φ

φ0

)
, (5)

where φ is the magnetic flux concatenated by the ring and φ0 = hc/e. In the absence of
magnetic field, τ will be taken to be real.

Note that for p = 0 the concentration (number of holes per atom) is 2/5 = 0.4; this is
somewhat more than half-filling (1/3 ≈ 0.33) but still reasonable. We are using CuO4 as the
unit just for the sake of simplicity, but the W = 0 mechanism produces bound pairs at different
fillings for larger clusters [12] and the full plane [1, 2] too. By replacing CuO4 by larger units,
one can model other ranges of the hole concentration.

We exactly diagonalize the |�| = 2- and 3-ring Hamiltonians; to this end we introduce
the spin-disentangled technique. We let M↑ + M↓ = N where Mσ is the number of particles of
spin σ ; {|φασ 〉} is a real orthonormal basis—that is, each vector is a homogeneous polynomial
in the p† and d† of degree Mσ acting on the vacuum. We write the ground state wavefunction
in the form

|	〉 =
∑
αβ

Lαβ |φα↑〉 ⊗ |φβ↓〉 (6)

which shows how the ↑ and ↓ configurations are entangled. The electrons of one spin are
treated as the ‘bath’ for those of the opposite spin: this form also enters the proof of a famous
theorem of Lieb [14]. In equation (6) Lαβ is a m↑ × m↓ rectangular matrix with mσ = (5|�|

Mσ

)
.

We let Kσ denote the kinetic energy mσ × mσ square matrix of Htot in the basis {|φασ 〉}, and
N (σ )

s the spin-σ occupation number matrix at site s in the same basis (N (σ )
s is a symmetric

matrix since the |φασ 〉s are real). Then, L is acted upon by the Hamiltonian Htot according to
the rule

Htot[L] = [K↑L + L K↓] + U
∑

s

N (↑)
s L N (↓)

s . (7)
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Figure 2. Numerical results for Cu3O12 with τ = 0.001. Lowest-energy eigenvalues labelled by
their interplanar quasi-momentum are shown versus flux φ. The pattern is periodic (a flux quantum
can be gauged away). (a) U = 0. A paramagnetic current is excited by the field and the system
is utterly normal. (b) U = 5. The ground state shows a clear superconducting pattern, with a
minimum at φ = φ0/2. All energies are in t units.

In particular for M↑ = M↓ (Sz = 0 sector) it holds that K↑ = K↓ and N (↑)
s = N (↓)

s . Thus, the
action of H is obtained in a spin-disentangled way. In the Sz = 0 sector for |�| = 3, the size
of the problem is 1863 225 and the storage of the Hamiltonian matrix requires a lot of space;
by the above device, we can work with matrices whose dimension is the square root of those of
the Hilbert space: 1365 × 1365 matrices solve the 1863 225 × 1863 225 problem, and are not
even required to be sparse. We believe that this approach will be generally useful for the many-
fermion problem. Since we are mainly interested in getting the low-lying part of the spectrum
as fast as possible, we opted for the Lanczos method, taking advantage of our knowledge of the
S[4] irrep of the τ = 0 ground state; the scalar product is given by 〈	1|	2〉 = Tr(L†

1 L2). In
this way, the Hamiltonian matrix takes the tri-diagonal form; however, a numerical instability
sets in well before convergence is achieved if one uses chains longer than a few tens of sites.
Therefore we use repeated two-site chains alternated with moderate-size ones.

The two-CuO4 ring (14 400 configurations in the Sz = 0 sector) is readily solved by a
Mathematica code on a personal computer; however, this cluster is not adequate for studying
the quantization (superconducting or otherwise) of a magnetic flux by the bound pair. The
reason is that the two units are each at the left and at the right of each other; any vector potential
perpendicular to the CuO4s can always be gauged away. However, we have verified that the
ground state energy with six holes is E (0)

Cu2O8
(6) = E (0)

CuO4
(4)+ E (0)

CuO4
(2) for τ = 0 and it receives

a negative correction ∝τ 2/|�CuO4(4)| for small τ , which is consistent with the presence of a
bound pair.

The three-CuO4 ring behaves similarly, but can also concatenate a flux. In figures 2(a)
and (b) we show the lowest eigenvalues versus φ for U = 0 and 5t , respectively; k
denotes the interplanar quasi-momentum quantum label. At τ = 0 the ground state energy
is E (0)

Cu3O12
(8) = E (0)

CuO4
(4)+2E (0)

CuO4
(2) and the low-energy sector derives mainly from the tensor

product of the ground states of three independent CuO4s with four, two and two holes (which
is the fundamental multiplet) and three, three and two holes (which is the lowest-lying excited
multiplet separated by a gap �CuO4(4)). For U = 0—see figure 2(a)—there is no pairing
in CuO4 and indeed the ground state energy is linear in the field at small fields (the normal
Zeeman effect). The lowest state is k = 2 throughout. Interestingly, Cu3O12 concatenated
with half a flux quantum would be diamagnetic, but the absence of a second minimum shows
that this would be Larmor diamagnetism. By contrast, at U = 5t , when pairing in CuO4 is
about optimum—see figure 1)—the k = 2 state is lowest in the central sector, k = 0 is the
ground state at φ → 0 while k = 1 is lowest as φ → φ0—see figure 2(b); this produces level
crossings and the superconducting flux quantization; there is a central minimum when the
system swallows a half-quantum of flux while, as we verified, �Cu3O12 < 0. Remarkably, one
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also observes superconducting quantization of a magnetic flux orthogonal to the plane [12].
With increasing U/t , the binding energy of the pair starts decreasing and eventually vanishes
for U ≈ 34.77t; we have found that at this point the flux quantization returns to normal and
the system behaves like a paramagnet. Even at optimal U , the side barriers are depressed by
increasing τ ; at τ ∼ 0.1t only small remnants remain; for still larger interplanar hoppings, the
superconductivity is removed and a pattern similar to that of figure 2(a) prevails. For larger
|�|, a smaller supercurrent would be necessary to screen the half-quantum of flux and the
critical τ which kills the superconductivity should be expected to grow larger.

In order to better analyse the results physically and extend them qualitatively to arbitrary
graphs, we obtained an effective Hamiltonian by the cell-perturbation method with H0, equa-
tion (3), the ‘cell Hamiltonian’ and Hτ , equation (4), the ‘intercell perturbation’ and by taking
into account only the low-energy singlet sector. We note that the cell-perturbation method
was already used in [15] to support the original Anderson conjecture [16] on the ‘low-energy
equivalence’ between the d– p model (proposed by Emery [17]) and the single-band Hubbard
model. Despite the similarities with [15] (like having the same cell Hamiltonian and weak
O–O links between different cells), our intercell perturbation is different and, more important,
it is the low-energy sector which differs (one needs to consider CuO4 units with two, three
and four holes to get bound pairs, in contrast to the ones with zero, one and two holes of [15]).

For a general graph �, with 2|�| + 2 p holes, we treat Hτ using a simplified second-order
degenerate perturbation theory, since Hτ is a one-body operator. Each degenerate unperturbed
ground state |
S

0 〉 may be labelled by a set S ⊂ � of units occupied by four holes; |S| = p.
The secular problem yields the eigenvalue equation

1

�CuO4(4)

∑
q

∑
S ′

〈
S
0 |Hτ |
q〉〈
q |Hτ |
S ′

0 〉aS ′ = εaS (8)

where the sum has been truncated to the low-energy excited eigenstates involving CuO4 units
with 2 � n � 4 holes, all taken in their ground states |	(n)

0 (α)〉, α = 1, . . . , |�|. The
amplitude aS ≡ a(α1, . . . , αp) is totally symmetric with respect to permutations of the distinct
indices α1, . . . , αp. Letting C(α) = {β ∈ � : ταβ �= 0}, after some algebra equation (8) may
be written in the form

εa(α1, . . . , αp) =
p∑

j=1

∑
β∈C(α j )

[
T Bose

β,α j
a(α1, . . . , α j−1, β, α j+1, . . . , αp)

− |T Bose
β,α j

|
∏
i �= j

(1 − δβαi )a(α1, . . . , αp)

]
. (9)

This is a Schrödinger equation for p hard-core bosons hopping with an effective hopping
integral T Bose

α,β ≡ (τ eff
αβ )2/�CuO4(4), with

τ eff
αβ = 〈	(2)

0 (α)| ⊗ 〈	(4)

0 (β)|Hτ |	(3)

0 (α)〉 ⊗ |	(3)

0 (β)〉. (10)

In figure 3(a) we show the trend of (|τ eff
αβ |/|ταβ |)2 versus U/t ; we note that the ratio decreases

monotonically. In equation (9), the first term in the rhs describes hole pair propagation,
e.g. from unit α j to an unoccupied unit β; in the second sum, the system gets back to the initial
state after virtually exploring unit β; the term

∏
i �= j (1 − δβαi ) takes into account that if β is

one of the occupied units, the particle cannot move toward it. Due to the minus sign, the term
in |T Bose

β,α j
| represents pair–pair repulsion.

In figure 3(b) the superconducting flux quantization for the |�| = 3 ring is reported as
reproduced by solving equation (9); it agrees well both qualitatively and quantitatively with
the numerical results of figure 2(b), thus confirming the above approximation. More data and
a fuller account of the low-energy theory will be presented elsewhere.
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Figure 3. (a) (|τ eff
αβ |/|ταβ |)2 versus U/t . (b) Results of equation (9) for Cu3O12 with τ = 0.001t ,

U = 5t . Lowest-energy eigenvalues labelled by their interplanar quasi-momentum are shown
versus flux φ. All energies are in t units.

In conclusion, we used a set of CuO4 units connected by weak O–O links to model the
interplanar coupling and c-axis superconductivity in cuprates. The results show that the system
with two holes in each unit is a background such that inserting 2 p holes one gets p pairs, bound
by the repulsive interaction. The bound pair propagation is well described by equation (9). We
found analytically superconducting flux quantization in the ring-shaped systems and confirmed
this finding numerically for the three-unit ring (1863 225 configurations). To this end, we
introduced a novel exact-diagonalization technique, which reduces the size of the matrices
that must be handled to the square root of the overall size of the Hilbert space. In fact, real
systems also contain vertical links via the orbitals of the apical oxygens. We expect that the
inclusion of these hoppings will not change the results qualitatively,since they do not contribute
to the propagation of the bound pair in the lowest-order approximation.

We thank Dr Claudio Verdozzi for useful comments.
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